2013

RENICE X5 mSATA SSD DATA SHEET

Renice Technology Co., Limited 2013-4-10

Revision History

Revision	Description	Date
1.0	Formal Release	04/10/2013
1.1	Adding Power Failure Protection Function	07/16/2013
1.2	Adding Security Function and Write Protection Function	08/02/2013
1.3	Security Function modification	12/22/2013

CATALOGUE

1. Introduction	3
1.1 Product Overview 1.2 Features	3
2. Functional Block Diagram	4
3. Physical Specification	5
4. Host Interface	5
5. Pin out Information	6
5.1 Pin Assignment 5.2 Connector Pin Signal Definitions	6 7
6. Power Specifications	8
6.1 Operating voltage6.2 Power Supply voltage6.3 Power Consumption (typical)	8
7. Reliability Specification	8
 7.1 Wear-leveling 7.2 H/W ECC and EDC for NAND Flash 7.3 Power Failure Protection 7.4 Over voltage and inrush current protection	
8. Command Set	9
8.1 IDENTIFY DEVICE	11
9. SMART	13
10. Security Function (Optional)	15
10.2 SE Type 10.3 Time taken for SE	15 16
11. Write Protection Function(Optional)	
12. Ordering Information	17
13. Product Part Number Naming Rule	

1. Introduction

1.1 Product Overview

Renice X5 50mm mSATA SSD is a compact SSD with Mini PCIe form factor and SATA 3.0Gb/s interface. By using MLC or SLC NAND flashes as storage media, it delivers high performance and reliability working in harsh environments like wide temperature, shock, vibration, dust, etc. Being fully compliant with JEDEC MO-300 industrial standard, X5 mSATA can be widely adopted in various embedded applications.

1.2 Features

•Performance:

Host Transfer Rate: 300MB/s Max Sequential Data Read/Write: 240MB/145MB/s (MLC)

240MB/180MB/s (SLC)

- Form factor: 50.95mm X 30mm X 3.65mm (LxWxH)
- Weight: <10g
- Interface standard: mSATA SATAII 3.0Gb/s
- Density: 8GB~128GB (MLC) 2GB~32GB (SLC)
- Input voltage: 3.3V (±5%)
- Standard operating temperature range from 0 to +70 °C Industrial operating temperature range from -40 to +85 °C
- \bullet Storage temperature range from -55 to +95 $^\circ\!\mathrm{C}$
- Flash management algorithm: static and dynamic wear-leveling, bad block management algorithm
- Support dynamic power management and SMART (Self-Monitoring, Analysis and Reporting Technology)
- Support hardware BCH ECC engine: 72-bit per 1 KB
- Support TRIM (requires OS support)
- Data retention: 10 years @25C
- MTBF: >3,000,000 Hours @25C (Telcordia SR-332 standard)

Figure 1: Functional Block Diagram

3. Physical Specification

Figure 2: Mechanical Drawing

4. Host Interface

Seamless SATA interoperability Plug-and-play field-proven SATA-v2.6-compliant interface 3 Gbps / 1.5 Gbps signaling (auto-negotiated) S.M.A.R.T. command transport (SCT) technology

5. Pin out Information

5.1 Pin Assignment

Figure 3: Pin Assignment

5.2 Connector Pin Signal Definitions

Pin	Definitions	Pin	Definitions
P1	NC	P2	+3.3V
P3	NC	P4	GND
P5	NC	P6	NC
P7	NC	P8	NC
P9	GND	P10	NC
P11	NC	P12	NC
P13	NC	P14	NC
P15	GND	P16	NC
P17	NC	P18	GND
P19	NC	P20	NC
P21	GND	P22	NC
P23	SATA Differential TX+ based on SSD	P24	+3.3V
P25	SATA Differential TX- based on SSD	P26	GND
P27	GND	P28	NC
P29	GND	P30	NC
P31	SATA Differential RX- based on SSD	P32	NC
P33	SATA Differential RX+ based on SSD	P34	GND
P35	GND	P36	NC
P37	GND	P38	NC
P39	+3.3V	P40	GND
P41	+3.3V	P42	NC
P43	GND	P44	NC
P45	Vendor	P46	NC
P47	Vendor	P48	NC
P49	DAS/DSS	P50	GND
P51	Presence Detection	P52	+3.3V

Table 1:Connector Pin Signal Definitions

6. Power Specifications

6.1 Operating voltage

3.3V (±5%)

6.2 Power Supply voltage

1.2v for Core, 3.3V /1.8V for NAND and Core

6.3 Power Consumption (typical)

Operation (Read/Write) – (1.02W/1.1W) Idle – 0.5W

7. Reliability Specification

ltem	Features		
Temperature	Operation	Standard: 0~70°C	
	Operation	Industrial: -40~+85°C	
	Storage	-55~+95°C	
Humidity	5-95%		
Vibration	10Hz-2000Hz, 16.4 G (X, Y, Z axis, 1 hour /axis)		
Shock	Peak Acceleration: 1,500 G, 0.5ms(Half-sine wave, $\pm X, \pm Y, \pm Z$ axis, 1 time/axis)		
	Peak Acceleration: 50 G, 11ms(Half-sine wave, $\pm X, \pm Y, \pm Z$ axis, 3 times/axis)		

Table 2: Reliability Specification

7.1 Wear-leveling

Renice X5 mSATA SSD supports both static and dynamic wear-leveling, these two algorithms guarantee all type of flash memory at same level of erase cycles to improve lifetime limitation of NAND based storage.

7.2 H/W ECC and EDC for NAND Flash

Supports hardware BCH ECC engine: 72-bit per 1 KB

7.3 Power Failure Protection

Renice X5 mSATA SSD adopts Voltage Detector Circuit to detect current voltage status, when current voltage is detected abnormal, the power failure protection function of X5 SSD will work to prevent data crash or drive corruption in case of sudden power failure.

7.4 Over voltage and inrush current protection

The over voltage and inrush current protection mechanism of Renice X5 mSATA SSD is designed to be a protect circuitry on Device Power In.

Once the current or voltage is exceeded, it will be pull down to the normal value in very short time to protect the drive.

8. Command Set

Renice X5 mSATA SSD supports the commands as shown in the following table

Table 3: Command Set List

Command	Code	Protocol			
General Feature Set					
Execute Drive Diagnostic	90h	Device diagnostic			
Flush Cache	E7h	Non-data			
Identify Device	ECh	PIO data-in			
Read DMA	C8h	DMA			
Read Multiple	C4h	PIO data-in			
Read Sector(s)	20h	PIO data-in			
Read Verify Sector(s)	40h or 41h	Non-data			
Set Feature	Efh	Non-data			
Set Multiple Mode	C6h	Non-data			
Write DMA	Cah	DMA			
Write Multiple	C5h	PIO data-out			
Write Sector(s)	30h	PIO data-out			
NOP	00h	Non-data			
Read Buffer	E4h	PIO data-in			
Write Buffer	E8h	PIO data-out			
Power Management Feature Set					
Check Power Mode	E5h or 98h	Non-data			
Idle	E3h or 97h	Non-data			
Idle Immediate	E1h or 95h	Non-data			
Sleep	E6h or 99h	Non-data			

Command	Code	Protocol				
Standby	E2h or 96h	Non-data				
Standby Immediate	E0h or 94h	Non-data				
Security Mode Feature Set						
Security Set Password	F1h	PIO data-out				
Security Unlock	F2h	PIO data-out				
Security Erase Prepare	F3h	Non-data				
Security Erase Unit	F4h	PIO data-out				
Security Freeze Lock	F5h	Non-data				
Security Disable Password	F6h	PIO data-out				
SMART Feature Set						
SMART Disable Operations	B0h	Non-data				
SMART Enable/Disable Auto save	B0h	Non-data				
SMART Enable Operations	B0h	Non-data				
SMART Return Status	B0h	Non-data				
SMART Execute Off-Line Immediate	B0h	Non-data				
SMART Read Data	B0h	PIO data-in				
Host Protected Area Feature Set						
Read Native Max Address	F8h	Non-data				
Set Max Address	F9h	Non-data				
Set Max Set Password	F9h	PIO data-out				
Set Max Lock	F9h	Non-data				
Set Max Freeze Lock	F9h	Non-data				
Set Max Unlock	F9h	PIO data-out				
48-bit Address Feature Set						
Flush Cache Ext	Eah	Non-data				
Read Sector(s) Ext	24h	PIO data-in				
Read DMA Ext	25h	DMA				
Read Multiple Ext	29h	PIO data-in				
Read Native Max Address Ext	27h	Non-data				
Read Verify Sector(s) Ext	42h	Non-data				
Set Max Address Ext	37h	Non-data				
Write DMA Ext	35h	DMA				
Write DMA FUA Ext	3Dh	DMA				
Write Multiple Ext	39h	PIO data-out				
Write Multiple FUA Ext	Ceh	PIO data-out				
Write Sector(s) Ext	34h	PIO data-out				

8.1 IDENTIFY DEVICE

The IDENTIFY DEVICE command enables the host to receive parameter information from the device. The following table gives the definition and value of each field in the Identify Device Information.

Word	F/V	Default	Data Field Type Information	
		Value		
0	F	044Ah	General configuration	
1	Х	XXXXh	Default number of cylinders	
2	V	0000h	Reserved	
3	Х	00XXh	Default number of heads	
4	Х	0000h	Obsolete	
5	Х	0240h	Obsolete	
6	F	XXXXh	Default number of sectors per track	
7 – 8	V	XXXXh	Number of sectors per card (Word 7= MSW, Word 8 = LSW)	
9	Х	0000h	Obsolete	
10 – 19	F	XXXXh	Serial number in ASCII (Right justified)	
20	Х	0002h	Obsolete	
21	Х	0002h	Obsolete	
22	Х	0000h	Obsolete	
23 – 26	F	XXXXh	Firmware revision in ASCII.	
			Big Endian Byte Order in Word.	
27 – 46	F	XXXXh	Model number in ASCII (Left justified).Big Endian Byte	
			Order in Word.	
47	F	8001h	Maximum number of sectors on Read/Write Multiple	
			command	
48	F	0000h	Reserved	
49	F	0F00h	Capabilities	
50	F	4000h	Capabilities	
51	F	0200h	PIO data transfer cycle timing mode	
52	Х	0000h	Obsolete	
53	F	0007h	Field validity	
54	Х	XXXXh	Current numbers of cylinders	
55	Х	XXXXh	Current numbers of heads	

Table 4: Identify Device Parameters

Word	F/V	Default Value	Data Field Type Information	
56	Х	XXXXh	Current sectors per track	
57 – 58	Х	XXXXh	Current capacity in sectors (LBAs)(Word 57 = LSW , Word 58 = MSW)	
59	F	0100h	Multiple sector setting	
60 – 61	F	XXXXh	Total number of sectors addressable in LBA Mode	
62	Х	0000h	Reserved	
63	F	0007h	Multiword DMA transfer Supports MDMA Mode 0, 1 and 2	
64	F	0003h	Advanced PIO modes supported	
65	F	0078h	Minimum Multiword DMA transfer cycle time per word	
66	F	0078h	Recommended Multiword DMA transfer cycle time	
67	F	0078h	Minimum PIO transfer cycle time without flow control	
68	F	0078h	Minimum PIO transfer cycle time with IORDY flow control	
69 – 74	F	0000h	Reserved	
75	F	001Fh	Queue depth	
76	F	0006h	Serial ATA capabilities	
			Supports Serial ATA Gen1	
			Supports Serial ATA Gen2	
	F	0206h	Supports receipt of host-initiated interface power	
			management requests	
77	V	0000h	Reserved	
78	F	0008h	Device supports initiating interface power management	
79	V	0000h	Reserved	
80	F	0080h	Major version number (ATAPI-7)	
81	F	0000h	Minor version number	
82	F	742Bh	Command sets supported 0	
83	F	5500h	Command sets supported 1	
84	F	4002h	Command sets supported 2	
85 – 87	V	XXXXh	Command set/feature enabled	
88	V	007Fh	Ultra DMA mode supported and selected	

Word	F/V	Default	Data Field Type Information	
		Value		
89	F	0003h	Time required for Security erase unit completion	
90	F	0000h	Time required for Enhanced security erase unit completion	
91	V	0000h	Current Advanced power management value	
92	V	FFFEh	Master Password Revision Code	
93 – 99	V	0000h	Reserved	
100 – 103	V	XXXXh	Maximum user LBA for 48-bit Address feature set	
104 – 127	V	0000h	Reserved	
128	V	0001h	Security status	
129 – 159	Х	0000h	Vendor unique bytes	
160	F	0000h	Power requirement description	
161	Х	0000h	Reserved	
162	F	0000h	Key management schemes supported	
163	F	0000h	CF Advanced True IDE Timing Mode Capability and Setting	
164 – 216	V	0000h	Reserved	
217	F	0100h	Non-rotating media (SSD)	
218 – 255	Х	0000h	Reserved	

Notes:

1.F = content (byte) is fixed and does not change.

2.V = content (byte) is variable and may change depending on the state of the device or the commands executed by the device.

3.X = content (byte) is vendor specific and may be fixed or variable

9. SMART

Table 5: SMART Command Set

Value	Command	Value	Command
D0	Read Data	D5h	Reserved
D1	Read Attribute Threshold	D6h	Reserved
D2	Enable/Disable Autosave	D8h	Enable SMART Operations
D3	Save Attribute Values	D9h	Disable SMART Operations
D4	Execute OFF-LINE Immediate	Dah	Return Status

RENICE®

Table 6: SMART Attribute Data Structure

The following 512 bytes make up the device SMART data structure. Users can obtain the data using the "Read Data" command (D0h)

Ву	F/V	Description
0	Х	Revision code
2 – 361	Х	Vendor specific
3	V	Off-line data collection status
3	Х	Self-test execution status byte
364 – 365	V	Total time in seconds to complete off-line data collection activity
3	Х	Vendor specific
3	F	Off-line data collection capability
368 – 369	F	SMART capability
3	F	Error logging capability
7		• 7-1 Reserved • 0 1 = Device error logging supported
0		
3	Х	Vendor specific
3	F	Short self-test routine recommended polling time (in minutes)
3	F	Extended self-test routine recommended polling time (in minutes)
3	F	Conveyance self-test routine recommended polling time (in minutes)
375 – 385	R	Reserved
386 – 395	F	Firmware Version/Date Code
396 – 397	F	Number of initial invalid block(396= MSB, 397 = LSB)
398 – 399	F	Reserved
400 – 406	F	'SMI2250'
407 – 415	Х	Vendor specific
4	F	Reserved
4	F	Program/write the strong page only
418 – 419	V	Number of spare block
420 – 445	F	Reserved
446 – 510	Х	Vendor specific
5	V	Data structure checksum

Notes:

1.F = content (byte) is fixed and does not change.

- 2.V = content (byte) is variable and may change depending on the state of the device or the commands executed by the device.
- 3.X = content (byte) is vendor specific and may be fixed or variable.
- 4.R = content (byte) is reserved and shall be zero.

10. Security Function (Optional)

Renice X5 mSATA SSD can support Secure Erase function with a Hardware Key* for emergency data erasure based on customers' request. Secure Erase can be triggered by pressing the Secure Erase Key. The process of erasure will not be stopped until finished, even if power failure happens, it will be continued when power is back on.

No matter Renice X5 mSATA SSD is acting as master Drive or slave drive, once the Secure Erase function is triggered, SE will be carried out immediately whether the SSD is in idle mode(no read/write), or work (read/write) mode. After SE is finished, the SSD gets to be uninitialized drive and can be used again after formatting.

Hardware key*: The X5 mSATA SSD is designed with SE jumper connector, the client is requested to connect an external hardware touch switch/button to trigger the SE function.

10.1 Technical Concept

SE is implemented by GPIO P10 of Controller Chip. SE could be trigged by pulling P10 down for 3 seconds, whether through H/W (Usually an external button) or S/W. Then Controller will send Delete Command to NAND Flash to start SE.

a. Trigger Time: 0~3 seconds

Controller will take it as mis-operation and no SE command will be sent.

b. Trigger Time: 3~10 seconds

All data on board will be deleted and data of FF pattern will be written in.

c. Trigger Time:10 seconds or above

Besides data, SSD firmware will be deleted.

If Power-Down or other operations breaking the SE occur during SE, Delete Command will be interrupted. Under such circumstance, Firmware records current Delete position and pause deletion. Once power supply gets normal, SE command will continue execution with highest priority.

10.2 SE Type

The specific SE type of X5 mSATA SSD is similar to NTISSP-9 which is one SE standard commonly seen from SSD solutions on market, however X5 only executes the SE command for

one time. (Note: The SE function of Renice X5 solution could be customized based on clients' standard.)

X5 SE is done by 2 steps, Erase and Write.

1. Erase: Every memory block on the board is erased;

2. Write: Every Memory Chips location is recorded with a pattern FF.

So if clients need other types of SE, please forward us specific standards. And our R&D will figure out the availability.

10.3 Time taken for SE

Scenario 1: only Mapping Table deleted. Data on disk could be recovered maliciously. Around 5 seconds

Scenario 2: Both Mapping Table and memory storage blocks are deleted. And disk will be written in fully with data of meaningless pattern.

Theoretical formula for Scenario 2:

e.g. Micron MT29F64G08CBABA NAND flash.

8GB=4096 BLOCK;

Each Block Erase needs 3ms based on Flash Data Sheet

Controller Used 2 plan and Interleave mode to scan the data;

Time=4096*3ms/2/1.5 = 4 Seconds

<u>Plan:</u> the same meaning with Channel for the Data transmission;

<u>Interleave</u>: used for enhance the Data transmission speed In One Channel; Interleave value depends on NAND deployed, which is usually between 1.0 and 2.0. In our example we use 1.5 as a convenient median.

11. Write Protection Function (Optional)

Renice X5 mSATA SSD can support write protection function based on customers' request with a Hardware Button*. Write protection can be enabled by operating the Write Protection button. Once write protect function triggered, the whole disk could be for read only, in that case, no more data could be written into the disk to avoid the virus infection.

Hardware Button*: Renice X5 mSATA SSD is designed with Write Protection jumper connector, the client is requested to connect an external hardware touch switch/button to operate the Write Protection function.

Capacities/Flash type	Standard Temp	Industrial Temp
2GB/ SLC	RCS002-SX5M	RIS002-SX5M
4GB/ SLC	RCS004-SX5M	RIS004-SX5M
8GB/ SLC	RCS008-SX5M	RIS008-SX5M
16GB/ SLC	RCS016-SX5M	RIS016-SX5M
32GB/ SLC	RCS032-SX5M	RIS032-SX5M
8GB/ MLC	RCM008-SX5M	RIM008-SX5M
16GB/ MLC	RCM016-SX5M	RIM016-SX5M
32GB/ MLC	RCM032-SX5M	RIM032-SX5M
64GB/ MLC	RCM064-SX5M	RIM064-SX5M
128GB/ MLC	RCM128-SX5M	RIM128-SX5M

12. Ordering Information

13. Product Part Number Naming Rule

