2013

RENICE X5 2.5" PATA IDE SSD Data Sheet

Renice Technology Co., Limited 2013-11-14

1. Introduction	2
1.1 Product Overview	2
1.2 Feature	2
2. Functional Block Diagram	3
3. Product Specifications	3
3.1 Physical Specifications	3
 3.2 Host Interface 3.3 Internal detectors for power fail protection 	4
4 Interface Description	4 A
4.1 Pin Assignment	4
5. Electric Specifications	
5.1 DC Characteristics	c
5.1 DC Characteristics	c.
5.3 AC Characteristics	6
5.3.1 Flash Interface AC Characteristics	
5.4 Power Consumption (typical)	
6. Reliability Specification	
6.1 Wear-leveling	
6.2 Endurance	
6.3 H/W ECC for NAND Flash	33
6.4 MTBF	33
6.5 Over voltage and inrush current protection	
7. Software Interface	
7.1 SMART Feature Set	
7.2 SMART Data Structure	34
7.3 SMART Attributes	35
8. PATA Host ID table	
9. Master/Slave disc settings	
9.1 Master disc set	
9.2 Slave disc set	
10. Ordering Information	
11. Product Part Number Naming Rule	

CATALOGUE

1. Introduction

1.1 Product Overview

Based on NAND Flash technology Memory, Renice X5 2.5" IDE SSD (Solid State Drive) is a storage device with high performance and high reliability. Equipped with powerful Error Correction Coding (ECC) and flash interface, Renice X5 2.5" IDE SSD can support new generation NAND flash and keep much more stability in data transmission.

Renice X5 2.5" IDE SSD offers advanced technology to transfer data to the host via a high efficiency DMA engine and utilizes the internal memory buffer in a sufficient way. With Renice's optimized wear leveling, bad block management and flash management technologies, Renice X5 2.5" IDE SSD delivers extraordinary performance in data read/write speed and data reliability. Furthermore, with Internal detectors for power fail protection, over voltage and inrush current protection hardware design, Renice X5 2.5" IDE SSD can be a high-end IDE storage device for areas including industrial, automobile, military and medical, etc.

1.2 Feature

- Performance:
 - Read: 118MB/s Write: 109MB/s (@128GB)
- Form factor: 2.5-inch (100.0mm x 70.0mm x 9.5mm) L×W×H
- Interface standard: 44 PIN PATA IDE
- Density: 8GB, 16GB, 32GB, 64GB, 128GB, 256GB
- Input voltage: 5.0V (±5%)
- Commercial operating temperature range from 0°C to +70°C Industrial operating temperature range from -40°C to +85°C
- Flash management algorithm: static and dynamic wear-leveling, bad block management algorithm.

• Supports dynamic power management and SMART (Self-Monitoring, Analysis and Reporting Technology).

• Internal detectors for power fail protection and Over voltage and inrush current protection hardware design.

- Hardware BCH ECC capable of correcting errors up to 72-bit/1KB
- Write endurance: >8 years @ 100GB write/day (32GB SLC SSD)
- Read endurance: unlimited
- Data retention: JESD47 compliant
- MTBF: 3,000,000 Hours

2. Functional Block Diagram

3. Product Specifications

3.1 Physical Specifications

Form factor		2.5 inch		
	Length	100.00±0.40		
Dimensions(m Width		70.00±0.20		
m)	Height	9.50±0.15		
Weight		<70g		
Connector		44pin PATA connector		

3.2 Host Interface

Host Interface

- Compliant with ATA/ATAPI-8
- Supports PIO Mode 0 6
- Supports Multiword DMA Mode 0 4
- Supports Ultra DMA Mode 0 7

- Supports PCMCIA Extended Memory Mode (cycle time: 250, 120, 100, 80 ns) with PCMCIA Ultra DMA Mode 0 - 7

- Supports TRIM command

3.3 Internal detectors for power fail protection

- Built-in 1.2V power-on reset
- Built-in 2.7V voltage detectors for power fail protection

4. Interface Description

4.1 Pin Assignment

Figure 3: Pin Assignment

Pin No.	Pin Name	Pin	Pin	Pin No.	Pin	Pin No.	Pin
		No.	Name		Name		Name
1	ATDEVICE	14	D10	27	DMARQ	40	DIAG
2	GND	15	D4	28	GND	41	DA0
3	NC	16	D11	29	DIOW	42	DA2
4	ATCSELE	17	D3	30	GND	43	CS0
	Ν						
5	DUMMY	18	D12	31	DIOR	44	CS1
6	DUMMY	19	D2	32	GND	45	DASP
7	RESET	20	D13	33	DIORDY	46	GND
8	GND	21	D1	34	ATCSEL	47	5.0V
9	D7	22	D14	35	DMACK	48	5.0V
10	D8	23	D0	36	GND	49	GND
11	D6	24	D15	37	INTRQ	50	NC
12	D9	25	GND	38	NC		
13	D5	26	DUMMY	39	DA1		

4.2 Pin Description

5. Electric Specifications

This chapter contains preliminary information and may be updated in a later version.

5.1 DC Characteristics

Figure 4: Bus Signal Level

Devementer Cymbol Min Mey Unit Demork								
Parameter	Symbol	MIN	Max	Unit	Remark			
Supply Voltage	VCC	4.5	5.5	V				
High Lovel Output Valtage		VCC -		V				
Tiigh Level Output Voltage	VON	0.8		v				
Low Level Output Voltage	VOL		0.8	V				
		4.0		V	Non-schmitt trigger			
Fligh Level input voltage	VID	2.92		V	Schmitt trigger[1]			
Low Lovel Input Voltage	VII		0.8	V	Non-schmitt trigger			
Low Level input voltage	VIL		1.70	V	Schmitt trigger[1]			
Pull-Up Resistance	RPU	50	73	kΩ				
Pull-Down Resistance	RPD	50	97	kΩ				

DC Characteristics for Host Interface ($V_{CC} = 5V$)

DC Characteristics for Host Interface ($V_{CC} = 3.3V$)

Parameter	Symbol	Min	Мах	Unit	Remark
Supply Voltage	VCC	2.97	3.63	V	
High Lovel Output Voltage		VCC -		V	
High Level Output Voltage	VOH	0.8		v	
Low Level Output Voltage	VOL		0.8	V	
High Lovel Input Voltage		2.4		V	Non-schmitt trigger
Fligh Level input voltage	VIH	2.05		V	Schmitt trigger[1]
Low Level Input Voltage	V/II		0.6	V	Non-schmitt trigger
	VIL		1.25	V	Schmitt trigger[1]

Pull-Up Resistance	RPU	52.7	141	kΩ	
Pull-Down Resistance	RPD	47.5	172	kΩ	

The I/O Pins other than Host Interface

Parameter	Symbol	Min	Мах	Unit	Remark
Supply Voltage	VCC	2.7	3.6	V	
High Level Output Voltage	VOH	2.4		V	
Low Level Output Voltage	VOL		0.4	V	
	VIH	2.0		V	Non-schmitt trigger
riigii Levei iliput voltage		1.4	2.0	V	Schmitt trigger[1]
Low Lovel Input Veltage	1/11		0.8	V	Non-schmitt trigger
Low Level input voltage	VIL	0.8	1.2	V	Schmitt trigger[1]
Pull-Up Resistance	RPU	40		kΩ	
Pull-Down Resistance	RPD	40		kΩ	

Notes:

^[1]Include CE1#, CE2#, HREG#, HOE#, HIOE#, HWE#, HIOW# pins.

^[2]Include RST#, T0, T1, and T2 pin.

5.2 Internal IP Characteristics

1.2V Power On Reset

Parameter		Min	Мах	Unit
Detect Voltage			1.3	V
Operating Voltage Range		0	1.65	V
Delay Time	Rise		4.5	μs
	Fall		2	μs

2.7V Voltage Detector

Parameter		Min	Мах	Unit
Detect Voltage Range	VRR	1.4	2.9	V
	VFR	1.3	2.8	V
Delay Time	Rise		4.5	us
	Fall		1.5	us

5.3 AC Characteristics

Attribute Memory Read Timing

Speed Version	300	Unit			
Item	Symbol	Min	Max		
Read Cycle Time	tc(R)	300		ns	

Address Access Time	ta(HA)		300	ns
Card Enable Access Time	ta(CEx)		300	ns
Output Enable Access Time	ta(HOE)		150	ns
Output Disable Time from CEx#	tdis(CEx)		100	ns
Output Disable Time from HOE#	tdis(HOE)		100	ns
Address Setup Time	tsu(HA)	30		ns
Output Enable Time from CEx#	ten(CEx)	5		ns
Output Enable Time from HOE#	ten(HOE)	5		ns
Data Valid from Address Change	tv(HA)	0		ns

Note: All time intervals are recorded in nanoseconds. HD refers to data provided by the PATA Card to the system. The CEx# signal or both the HOE# signal and the HWE# signal are deasserted between consecutive cycle operations.

Figure 5: Attribute Memory Read Timing

Cycle Time Mode		250 ns		120ns		100ns		80ns		
Item	Symbol	Mi n	Max	Mi n	Max	Mi n	Max	Mi n	Max	Unit
Output Enable Access Time	ta(HOE)		125		60		50		45	ns
Output Disable Time from HOE#	tdis(HOE)		100		60		50		45	ns
Address Setup Time	tsu(HA)	30		15		10		10		ns
Address Hold Time	t th(HA)	20		15		15		10		ns
CEx# Setup before HOE#	tsu(CEx)	0		0		0		0		ns
CEx# Hold following HOE#	th(CEx)	20		15		15		10		ns
Wait Delay Falling from HOE# tv	tv(IORDY- HOE)		35		35		35		na [1]	ns
Data Setup for Wait Release	tv(IORDY)		0		0		0		na[1]	ns
Wait Width Time _[2]	tw(IORDY)		350		350		350		na[1]	ns

Configuration Register (Attribute Memory) Write Timing

Speed Version		250	ns	Unit
Item	Symbol	Min	Max	Onic
Write Cycle Time	tc(W)	250		ns
Write Pulse Width	tw(HWE)	150		ns
Address Setup Time	tsu(HA)	30		ns
Write Recovery Time	trec(HWE)	30		ns
Data Setup Time for HWE#	tsu(HD-HWEH)	80		ns
Data Hold Time	th(HD)	30		ns

Note: All time intervals are recorded in nanoseconds. HD refers to data provided by the system to the PATA Card.

Figure 6: Configuration Register (Attribute Memory) Write Timing

Common Memory Read Timing

Notes:

[1] IORDY is not supported in this mode.

 $_{[2]}$ The maximum load on IORDY is 1 LSTTL with a 50 pF (40 pF below 120 nsec cycle time) total load. All time intervals are recorded in nanoseconds. HD refers to data provided by the PATA Card to the system. The IORDY signal can be ignored when the HOE# cycle-to-cycle time is greater than the Wait Width time. The Max Wait Width time can be determined from the Card Information Structure (CIS). Although adhering to the PCMCIA specification of 12 μ s, the Wait Width time is intentionally lower in this specification.

Figure 7: Common Memory Read Timing

Common Memory Write Timing

Cycle Time Mode		25	0 ns	12	0ns	10	0ns	8	Ons	
Item	Symbol	Mi n	Max	Mi n	Max	Mi n	Max	Mi n	Max	Unit
Data Setup before HWE#	tsu(HD- HWEH)	80		50		40		30		ns
Data Hold following HWE#	th(HD)	30		15		10		10		ns
HWE# Pulse Width	tw(HWE)	15 0		70		60		55		ns
Address Setup Time	tsu(HA)	30		15		10		10		ns
CEx# Setup before HWE#	tsu(CEx)	0		0		0		0		ns
Write Recovery Time	Trec (HWE)	30		15		15		15		ns
Address Hold Time	th(HA)	20		15		15		15		ns
CEx# Hold following HWE#	th(CEx)	20		15		15		10		ns
Wait Delay Falling from HWE#	tv(IORD Y-HWE)		35		35		35		na[1]	ns
HWE# High from Wait Release	Tv (IORDY)	0		0		0		na[1]		
Wait Width Time[2]	tw (IORDY)		350		350		350		na[1]	

[1] IORDY is not supported in this mode.

 $_{[2]}$ The maximum load on IORDY is 1 LSTTL with a 50 pF (40 pF below 120 nsec Cycle Time) total load. All time intervals are recorded in nanoseconds. HD refers to data provided by the PATA Card to the system. The IORDY signal can be ignored when the HWE# cycle-to-cycle time is greater than the Wait Width time. The Max Wait Width time can be determined from the Card Information Structure (CIS). Although adhering to the PCMCIA specification of 12 μ s, the Wait Width time is intentionally lower in this specification.

Figure 8: Common Memory Write Timing

I/O Read Timing

Cycle Time Mode		25	0 ns	12	0ns	10	0ns	8	Ons	
Item	Symbol	Mi n	Max	Mi n	Max	Mi n	Max	Mi n	Max	Unit
Data Delay after HIOE#	td(HIOE)		100		50		50		45	ns
Data Hold following HIOE#	th(HIOE)	0		5		5		5		ns
HIOE# Width Time	tw(HIOE)	16 5		70		65		55		ns
Address Setup before HIOE#	tsuHA (HIOE)	70		25		25		15		ns
Address Hold following HIOE#	thHA (HIOE)	20		10		10		10		ns
CEx# Setup before HIOE#	tsuCEx (HIOE)	5		5		5		5		ns
CEx# Hold following HIOE#	thCEx (HIOE)	20		10		10		10		ns
HREG# Setup before HIOE#	tsuHRE G(HIOE)	5		5		5		5		ns
HREG# Hold following HIOE#	thHREG (HIOE)	0		0		0		0		ns
Wait Delay Falling from HIOE#[2]	tdIORD Y(HIOE)		35		35		35		na[1]	
Data Delay from Wait Rising _[2]	Td (IORDY)		0		0		0		na[1]	

Wait Width Time[2]	Tw	250	250	250	0041	
	(IORDY)	300	350	350	110[1]	

[1] IORDY is not supported in this mode.

 $_{[2]}$ Maximum load on IORDY is 1 LSTTL with a 50 pF (40 pF below 120 nsec cycle time) total load. All time intervals are recorded in nanoseconds. Although minimum time from IORDY high to HIOE# high is 0 nsec, the minimum HIOE# width is still met. HD refers to data provided by the PATA Card to the system. Although adhering to the PCMCIA specification of 12 μ s, the Wait Width time is intentionally lower in this specification.

Figure 9: I/O Read Timing

I/O Write Timing

Cycle Time Mode		25	0 ns	12	0ns	10	0ns	80	Ons	
Item	Symbol	Mi n	Max	Mi n	Max	Mi n	Max	Mi n	Max	Unit
Data Setup before HIOW#	tsu(HIO W)	60		20		20		15		ns
Data Hold following HIOW#	th(HIOW)	30		10		5		5		ns
HIOW# Width Time	tw(HIOW)	16 5		70		65		55		ns
Address Setup before HIOW#	tsuHA (HIOW)	70		25		25		15		ns
Address Hold following HIOW#	thHA (HIOW)	20		20		10		10		ns
CEx# Setup	tsuCEx	5		5		5		5		ns

before HIOW#	(HIOW)									
CEx# Hold following HIOW#	thCEx (HIOW)	20		20		10		10		ns
HREG# Setup before HIOW#	tsuHREG (HIOW)	5		5		5		5		ns
HREG# Hold following HIOW#	thHREG (HIOW)	0		0		0		0		ns
Wait Delay Falling from HIOW#[2]	tdIORDY (HIOW)		35		35		35		na[1]	ns
HIOW# high from Wait high[2]	tdrHIOW (IORDY)	0		0		0		na[1]		ns
Wait Width Time[2]	Tw (IORDY)		350		350		350		na[1]	ns

[1] IORDY is not supported in this mode.

^[2] The maximum load on IORDY is 1 LSTTL with a 50 pF (40 pF below 120 nsec cycle time) total load. All time intervals are recorded in nanoseconds. Although minimum time from IORDY high to HIOW# high is 0 nsec, the minimum HIOW# width is still met. HD refers to data provided by the PATA Card to the system. Although adhering to the PCMCIA specification of 12 μ s, the Wait Width time is intentionally lower in this specification.

Figure 10: I/O Write Timing

True IDE PIO Mode Read/Write Timing

	Item	Mode 0	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6
t0	Cycle time (Min.)[1]	600	383	240	180	120	100	80
t1	Address valid to HIOE# / HIOW# setup (Min.)	70	50	30	30	25	15	10
t2	HIOE# / HIOW# (Min.)[1]	165	125	100	80	70	65	55
t2	HIOE# / HIOW# (Min.) Register (8-bit)[1]	290	290	290	80	70	65	55
t2i	HIOE# / HIOW# recovery time (Min.)[1]	-	-	-	70	25	25	20
t3	HIOW# data setup (Min.)	60	45	30	30	20	20	15
t4	HIOW# data hold (Min.)	30	20	15	10	10	10	5
t5	HIOE# data setup (Min.)	50	35	20	20	20	20	10
t6	HIOE# data hold (Min.)	5	5	5	5	5	5	5
t6Z	HIOE# data tristate (Max.) _[2]	30	30	30	30	30	30	20
t7	Address valid to IOCS16# assertion (Max.) _[4]	90	50	40	n/a	n/a	n/a	n/a

t8	Address valid to IOCS16# released (Max.) _[4]	60	45	30	n/a	n/a	n/a	n/a
t9	HIOE# / HIOW# to address valid hold	20	15	10	10	10	10	10
tR D	Read Data valid to IORDY active (Min.), if IORDY initially low after tA	0	0	0	0	0	0	0
tA	IORDY Setup time[3]	35	35	35	35	35	na[5]	na[5]
tB	IORDY Pulse Width (Max.)	1250	1250	1250	1250	1250	na [5]	na[5]
tC	IORDY assertion to release (Max.)	5	5	5	5	5	na [5]	na[5]

Notes: All timings are in nanoseconds. The maximum load on IOCS16# is 1 LSTTL with a 50 pF (40 pF below 120 nsec cycle time) total load. All time intervals are recorded in nanoseconds. Although minimum time from IORDY high to HIOE# high is 0 nsec, the minimum HIOE# width is still met.

^[1]Where t0 denotes the minimum total cycle time; t2 represents the minimum command active time; t2i is the minimum command recovery time or command inactive time. Actual cycle time equals the sum of actual command active time and actual command inactive time. The three timing requirements for t0, t2, and t2i are met. The minimum total cycle time requirement is greater than the sum of t2 and t2i, implying that a host implementation can extend either or both t2 or t2i to ensure that t0 is equal to or greater than the value reported in the device's identity data. A PATA Card implementation supports any legal host implementation.

^[2] This parameter specifies the time from the negation edge of the HIOE# to the time that the PATA Card (tri-state) no longer drives the data bus.

[3] The delay originates from HIOE# or HIOW# activation until the state of IORDY is first sampled. If IORDY is inactive, the host waits until IORDY is active before the PIO cycle is completed. When the PATA Storage Card is not driving IORDY, which is negated at tA after HIOE# or HIOW# activation, then t5 is met and tRD is inapplicable. When the PATA Card is driving IORDY, which is negated at the time tA after HIOE# or HIOW# activation, then tRD is met and t5 is inapplicable.

[4] Both t7 and t8 apply to modes 0, 1, and 2 only. For other modes, this signal is invalid.

[5] IORDY is not supported in this mode.

Figure 11: True IDE Mode Read/Write Timing

1. Device address comprises CE1#, CE2#, and HA[2:0].

2. Data comprises HD[15:0] (16-bit) or HD[7:0] (8-bit).

3. IOCS16# is shown for PIO modes 0, 1, and 2. For other modes, this signal is ignored.

4. The negation of IORDY by the device is used to lengthen the PIO cycle. Whether the cycle is to be extended is determined by the host after tA from the assertion of HIOE# or HIOW#. The assertion and negation of IORDY is described in the following three cases.

(a) The device never negates IORDY: No wait is generated.

(b) Device drives IORDY low before tA: a wait is generated. The cycle is completed after IORDY is reasserted. For cycles in which a wait is generated and HIOE# is asserted, the device places read data on D15-D00 for tRD before IORDY is asserted.

	Item	Mode 0	Mode1	Mode 2	Mode3	Mode 4	Unit	Note
tO	Cycle time (Min.)	480	150	120	100	80	ns	[1]
tD	HIOE# / HIOW# asserted width (Min.)	215	80	70	65	55	ns	[1]
tE	HIOE# data access (Max.)	150	60	50	50	45	ns	
tF	HIOE# data hold (Min.)	5	5	5	5	5	ns	
tG	HIOE# / HIOW# data setup (Min.)	100	30	20	15	10	ns	
tH	HIOW# data hold (Min.)	20	15	10	5	5	ns	
tl	HREG# to HIOE# / HIOW# setup (Min.)	0	0	0	0	0	ns	

True IDE Multiword DMA Mode Read/Write Timing

tJ	HIOE# / HIO50W# to HREG# hold (Min.)	20	5	5	5	5	ns	
tKR	HIOE# negated wi40dth (Min.)	50	50	25	25	20	ns	[1]
tK	HIOW# 30negated	215	50	25	25	20	ns	[1]
vv	width (iviin.)							
tLR	HIOE# to DMARQ delay (Max.)	120	40	35	35	35	ns	
tLW	HIOW# to DMARQ delay (Max.)	40	40	35	35	35	ns	
tM	CEx# valid to HIOE# / HIOW#	50	30	25	10	5	ns	
tN	CEx# hold	15	10	10	10	10	ns	

^[1]Where t0 is the minimum total cycle time and tD is minimum command active time, whereas tKR and tKW are minimum command recovery time or command inactive time for input and output cycles, respectively. Actual cycle time equals the sum of actual command active time and actual command inactive time. The three timing requirements of t0, i.e. tD, tKR, and tKW,must be met. The minimum total cycle time requirement exceeds the sum of tD and tKR or tKW for input and output cycles, respectively, implying that a host implementation can extend either or both tD and tKR or tKW as deemed necessary to ensure that t0 equals or exceeds the value reported in the device's identity data.

Figure 12: True IDE Multiword DMA Mode Read/Write Timing

Notes:

1. If a card cannot sustain continuous, minimum cycle time DMA transfers, it may negate DMARQ during the time from the start of a DMA transfer cycle (to suspend DMA transfers in progress) and reassertion of the signal at a relatively later time to continue DMA transfer operations.

2. The host may negate this signal to suspend the DMA transfer in progress.

Signal	Туре	(Non UDMA MEM MODE)	PC CARD MEM MODE UDMA	PC CARD IO MODE UDMA	TRUE IDE MODE UDMA
DMARQ	Output	(INPACK#)	DMARQ#	DMARQ#	DMARQ
HREG#	Input	(REG#)	DMACK#	DMACK	DMACK#
HIOW#	Input	(IOWR#)	STOP ^[1]	STOP[1]	STOP ^[1]
			HDMARDY#(R	HDMARDY#(R)[1][HDMARDY#(R)[1][
HIOE#	Input	(IORD#))[1][2] HSTROBE(W)[2] HSTROBE(W)[1][3][2] HSTROBE(W)[1][3][
			1][3][4]	4]	4]
IORDY	Output	(WAIT#)	DDMARDY#(W)[1][3] DSTROBE(R)[1][2][4]	DDMARDY#(W)[1][3] DSTROBE(R)[1][2][4]	DDMARDY#(W)[1][3] DSTROBE(R)[1][2][4]
HD[15:0]	Bidir	(D[15:00])	D[15:00]	D[15:00]	D[15:00]
HA[10:0]	Input	(A[10:00])	A[10:00]	A[10:00]	A[02:00][5]
CSEL#	Input	(CSEL#)	CSEL#	CSEL#	CSEL#
HIRQ	Output	(READY)	READY	INTRQ#	INTRQ
CE1# CE2#	Input	(CE1#) (CE2#)	CE1# CE2#	CE1# CE2#	CS0# CS1#

Ultra DMA Signal Usage in Each Interface Mode

Notes:

[1] UDMA interpretation of this signal is valid only during an Ultra DMA data burst.

^[2] UDMA interpretation of this signal is valid only during an Ultra DMA data burst during a DMA Read command.

[3] UDMA interpretation of this signal is valid only during an Ultra DMA data burst during a DMA Write command.

[4] HSTROBE and DSTROBE signals are active on both rising and falling edges.

[5] Address lines 03-10 are not used in the True IDE mode.

											UD	М						Measu
	UD	MA	UD	MA	UD	MA	UD	MA	UD	MA	A		U	DM	Α	UD	MA	re
Na	Мо	de O	Мос	de 1	Мос	de 2	Мо	de3	Мос	de 4	Мо	d	M	ode	96	Мо	de 7	Locati
me											е 5	5						on
	Mi	Ма	Mi	Ма	Mi	М	Mi	М	Mi	М	Mi	Μ	a I	Νi	Μ	Μ	м	(see
	n	х	n	x	n	ax	n	ax	n	ах	n	х		n	ax	in	ax	Note[2])
t2CYC	24		16		12		9		60		4		20			2		Sondor
TYP	0		0		0		0		00		0		30			4		Sender
tcyc	11		73		54		3		25		1		13			1		Note[3]

Ultra DMA Data Burst Timing Requirements

	2						9				6. 8		.0		0		
toovo	23		15		11		8		57		3		20		2		Sondor
12CYC	0		3		5		6		57		8		29		3		Sender
tos	15		10		7.		7.		5.		4.		2.		2.		Recipie
	.0 5		.0		0		0		0		0		6		5		nt
tdн	5. 0		4. 6		ა. 5		2. a		Recipie								
	0		0		U		2		0		0		5		5		
tovs	70		48		31		0.		6. -		4.		4.		2.		Sender
	.0		.0		.0		0		1		8		0		9		
tovн	6.		6.		6.		6.		6.		4.		4.		3.		Sender
LD VII	2		2		2		2		2		8		0		2		Condor
tcs	15		10		7.		7.		5.		5.		5.		5.		Device
	.0 5		.0		5		5		5		5		5		5		
tсн	0		0		0		0		0		0		0. 0		0.		Device
	70		10		21		2		6		1		10		1		
tcvs	0		40 0		0		0.		0. 7		0.		0		0.		Host
	.0		.0		.0		0				0		.0		0		
	6.		6.		6.		6.		6.		1		10		1		
T CVH	2		2		2		2		2		0.		.0		0.		Host
											0				1		
tzrs	0		0		0		0		0		3		25		5.		Device
											5				0		
	70		48		31		2		6.		2		17		1		
tdzfs	.0		.0		.0		0.		7		5		.5		0.		Sender
		22		20		17	0	12		12		0			5		
trs		23		20		0		0		0		9		80		70	Device
		15		15	_	15	•	10		10		7					
tli	0	0	0	0	0	0	0	0	0	0	0	5	0	60		50	Note[4]
t⋈⊔i	20		20		20		2		20		2		20		2		Host
tui	0		0		0		0		0		0		0		0		Host
4		40		40		40		40		40		1		40		40	Neter
T AZ		10		10		10		10		10		0		10		10	NOTE[5]
tzaн	20		20		20		2		20		2		20		2		Host
tzap	0		0		0		0		0		0		0		0		Dovico
1ZAD	U		U		0		2		U		2	5	U		2		Device
tenv	20	70	20	70	20	70	0	55	20	55	0	0	20	50	0	50	Host
trfs		75		70		60		60		60		5		50		50	Sender

												0					
trp	16 0		12 5		10 0		1 0 0		10 0		8 5		85		8 5		Host
tiord YZ		20		20		20		20		20		2 0		20		20	Device
tzior dy	0		0		0		0		0		0		0		0		Device
tаск	20		20		20		2 0		20		2 0		20		2 0		Host
tss	50		50		50		5 0		50		5 0		50		5 0		Sender

Notes: All timings in ns:

[1] All timing measurement switching points (low to high and high to low) are taken at 1.5V.

^[2] All signal transitions for a timing parameter are determined at the connector specified in the measurement location column.For instance, for the case of tRFS, both STROBE and DMARDY# transitions are determined by the sender's connector.

[3] Parameter toyo is determined at the connector of the recipient farthest from the sender.

[4] Parameter tLI is determined at the connector of a sender or recipient responding to an incoming transition from the recipient or sender, respectively. Both incoming signal and outgoing response are determined at the same connector.

[5] Parameter t_{AZ} is determined at the connector of a sender or recipient driving the bus, and must release the bus to allow for a bus turnaround.

[6] Table 25 lists the AC Timing requirements: Ultra DMA AC Signal Requirements.

Name	Comment	Note
t2CYCTY	Typical sustained average two cycle time	
Р		
tCYC	Cycle time allowing for asymmetry and clock variations (from STROBE	
	edge to STROBE edge)	
t2CYC	Two cycle time allowing for clock variations (from rising edge to next	[2][5]
	rising edge or from falling edge to next falling edge of STROBE)	
tDS	Data setup time at recipient (from data valid until STROBE edge)	[2][5]
tDH	Data hold time at recipient (from STROBE edge until data may become	[3]
	invalid)	
tDVS	Data valid setup time at sender (from data valid until STROBE edge)	[3]
tDVH	Data valid hold time at sender (from STROBE edge until data may	[2]
	become invalid)	
tCS	CRC word setup time at device	[2]
tCH	CRC word hold time at device	[3]
tCVS	CRC word valid setup time at host (from CRC valid until DMACK(#)	[3]
	negation)	
tCVH	CRC word valid hold time at sender (from DMACK(#) negation until	

Ultra DMA Data Burst Timing Descriptions

	CRC may become invalid)				
tZFS	Time from STROBE output released-to-driving until the first transition of				
	critical timing.				
tDZFS	Time from data output released-to-driving until the first transition of				
	critical timing.				
tFS	First STROBE time (for device to first negate DSTROBE from STOP	[1]			
	during a data in burst)				
tLI	Limited interlock time	[1]			
tMLI	Interlock time with minimum				
tUI	Unlimited interlock time				
tAZ	Maximum time allowed for output drivers to release (from asserted or				
	negated)				
tZAH	Minimum delay time required for output				
tZAD	drivers to assert or negate (from released)				
tENV	Envelope time (from DMACK(#) to STOP and HDMARDY# during data				
	in burst initiation and from DMACK(#) to STOP during data out burst				
	initiation)				
tRFS	Ready-to-final-STROBE time (no STROBE edges shall be sent this long				
	after negation of DMARDY#)				
tRP	Ready-to-pause time (that recipient shall wait to pause after negating				
	DMARDY#)				
tIORDYZ	Maximum time before releasing IORDY	[6]			
tZIORDY	Minimum time before driving IORDY	[4][6]			
tACK	Setup and hold times for DMACK(#) (before assertion or negation)				
tSS	Time from STROBE edge to negation of DMARQ(#) or assertion of				
	STOP (when sender terminates a burst)				

[1] Parameters tui, tMLI (in Figure 16: Ultra DMA Data-In Burst Device Termination Timing and Figure 17: Ultra DMA Data-In Burst Host Termination Timing), and tLI represent sender-to-recipient or recipient-to-sender interlocks, i.e., one agent (sender or recipient) is waiting for the other agent to respond with a signal before proceeding. Parameter tui denotes an unlimited interlock that has no maximum time value; tMLI represents a limited time-out that has a defined minimum; tLI is a limited time-out that has a defined maximum.

[2] The 80-conductor cabling is required to meet setup (tDs, tCs) and hold (tDH, tCH) times in modes exceeding 2.

[3] Timing for tovs, tovh, tovs, and tovh must be met for lumped capacitive loads of 15 and 40 pF at the connector where the data and STROBE signals have the same capacitive load value. Due to cable reflections, these timing measurements are invalid in a system functioning normally.

[4]. For all timing modes, parameter tZIORDY may be greater than tENV since the host has a pull-up on IORDY giving it a known state when released.

¹⁵[Parameters tbs and tbH for mode 5 are defined for a recipient at the end of a cable only in a configuration that has a single device located at the cable end. This configuration can result in tbs and tbH for mode 5 at the middle connector having minimum values of 3.0 and 3.9 ns, respectively.

[6] The parameters are applied to True IDE mode operation only.

	UD	MA	UD	MA	UD	MA	UD	MA	UD	MA	UD	MA	UD	MA	UD	MA	
Na	Мос	de 0	Мо	de 1	Мос	de 2	Mo	de3	Мос	de 4	Мо	de 5	Мо	de 6	Мо	de 7	Linit
me	Mi	Ма	Mi	Ма	Mi	Ма	Mi	Ма	Mi	Ma	Mi	Ма	Mi	Ма	Mi	Ма	Unit
	n	х	n	х	n	х	n	х	n	х	n	х	n	х	n	х	
toolo	14.		0.7		68		6.8		4.		2.		2.		2.		ns
LDSIC	7		9.7		0.0		0.0		8		3		3		3		
touro		10		10		4.		2.		2.		2.		nc			
UHIC	4.0		4.0		4.0		4.0		8		8		8		8		115
tovsi	72.		50.		33.		22.		9.		6.		5.		3.		ne
С	9		9		9		6		5		0		2		7		115
t dvhi	۹٥		90		90		90		9.		6.		5.		3.		ne
С	3.0		3.0		3.0		3.0		5		0		2		7		113
tosic	Reci	ipient	IC da	ta seti	up tim	e (fro	m dat	a valio	d until	STRO	DBE e	edge)	(see l	Note[2	2])		ns
touic	Reci	ipient	IC da	ta ho	ld tim	e (fro	m STI	ROBE	edge	e until	data	may	becor	me inv	/alid)	(see	ne
UNIC	Note	e[2])															113
tovsi	Sen	der IC	data	valid	setun	time	from	data v	u bilev	ntil S			ام) (د		to[3])		ns
С	Sender IC data valid setup time (nom data valid until STROBE edge) (see Note[3])																
tdvнi	Sender IC data valid hold time (from STROBE edge until data may become invalid) (see									ne							
С	Note	e[3])															113

Ultra DMA Sender and Recipient IC Timing Requirements

Notes:

[1] All timing switching point measurements (low to high and high to low) are taken at 1.5V.

[2] The correct data value is captured by the recipient given input data with a slew rate of 0.4 V/ns rising and falling and the input STROBE with a slew rate of 0.4 V/ns rising and falling at tDSIC and tDHIC timing (as measured at 1.5V).

[3] Parameters tDVSIC and tDVHIC must be met for lumped capacitive loads of 15 and 40 pF at the IC where all signals have the same capacitive load value. Noise that can couple onto the output signals from external sources is not included in these values.

Ultra DMA AC Signal Requirements

Name	Comment	Min [V/ns]	Max [V/ns]	Note
SRISE	Rising Edge Slew Rate for any signal		1.25	[1]
SFALL	Falling Edge Slew Rate for any signal		1.25	[1]

Note:

^[1] The sender is tested while driving an 18 inch, 80 conductor cable with PVC insulation. The signal being tested must be cut at a test point such that it has no trace, cable, or recipient loading after the test point. All other signals must remain connected through to the recipient. The test point should be located between a sender's series termination resistor and within 0.5 inch or less from where the conductor exits the connector. If the test point is on a cable conductor rather than the PCB, an adjacent ground conductor must also be cut within 0.5 inch of the connector. The test load and test points should be soldered directly to the exposed source side connectors. The test loads consist of a 15 pF or a 40 pF, 5%, 0.08 inch by 0.05 inch surface mount or relatively smaller capacitor connected between the test point and ground. Slew rates are met for both capacitor values. Measurements must be taken at the test point using a <1

pF, >100 Kohm, 1 Ghz probe and a 500 MHz oscilloscope. The average rate is measured from 20-80% of the settled VOH level with data transitions at least 120 nsec apart. The settled VOH level must be measured as the average high output level under the defined test conditions from 100 nsec after 80% of a rising edge until 20% of the subsequent falling edge.

Notes:

1. All waveforms in this diagram are shown with the asserted state high. Negative true signals are inverted on the bus relative to the diagram.

2. The definitions for the IORDY:DDMARDY#:DSTROBE, HIOE#: HDMARDY#: HSTROBE and HIOW#: STOP signal lines are not in effect until DMARQ(#) and DMACK(#) are asserted. Notably, HA[2:0], CS0# and CS1# are True IDE mode signal definitions, and HA[10:0], CE1# and CE2# are PC Card mode signals. The Bus polarity of DMACK(#) and DMARQ(#) is based on the active interface mode.

Figure 14: Sustained Ultra DMA Data-In Burst Timing

Note: HD[15:0] and IORDY signals are shown at both the host and device to emphasize that neither cable settling time nor cable propagation delay allow data signals to be considered stable at the host until after they are driven by the device.

Figure 15: Ultra DMA Data-In Burst Host Pause Timing

Notes:

1. All waveforms in this diagram are shown with the asserted state high. Negative true signals are inverted on the bus relative to the diagram.

2. The host can implement STOP to request termination of the Ultra DMA data burst at a time no sooner than when tRP after HDMARDY# is negated.

3. After negating HDMARDY#, the host may receive zero, 1, 2, or 3 additional data words from the device.

4. Bus polarities of the DMARQ(#) and DMACK(#) signals are dependent on the active interface mode.

Figure 16: Ultra DMA Data-In Burst Device Termination Timing

Notes:

1. All waveforms in this diagram are shown with the asserted state high. Negative true signals are inverted on the bus relative to the diagram.

2. Definitions for STOP, HDMARDY#, and DSTROBE signal lines are no longer in effect once DMARQ(#) and DMACK(#) are negated. The HA[2:0], CS0# and CS1# are True IDE mode signal definitions. HA[10:0], CE1# and CE2# are PC Card mode signals. Bus polarities of DMARQ(#) and DMACK(#) are dependent on the active interface mode.

Figure 17: Ultra DMA Data-In Burst Host Termination Timing

Notes:

1. All waveforms in this diagram are shown with the asserted state high. Negative true signals are inverted on the bus relative to the diagram.

2. Definitions for STOP, HDMARDY#, and DSTROBE signal lines are no longer in effect once DMARQ(#) and DMACK(#) are negated. The HA[2:0], CS0# and CS1# are True IDE mode signal definitions. The HA[10:0],CE1# and CE2# are PC Card mode signal definitions. Bus polarities of DMARQ(#) and DMACK(#) are dependent on the active interface mode.

Figure 18: Ultra DMA Data-Out Burst Initiation Timing

1. All waveforms in this diagram are shown with the asserted state high.

2. Negative true signals are inverted on the bus relative to the diagram.

3 Definitions for STOP, DDMARDY#, and HSTROBE signal lines are not in effect until the DMARQ(#) and DMACK(#) are asserted. The HA[2:0], CS0# and CS1# are True IDE mode signal definitions.

4. The HA[10:0],CE1# and CE2# are PC Card mode signal definitions. Bus polarities of DMARQ(#) and DMACK(#) are dependent on the active interface mode.

Figure 19: Sustained Ultra DMA Data-Out Burst Timing

Note: Data (HD[15:0]) and HSTROBE signals are shown at both the device and host to emphasize that neither cable settling time nor cable propagation delay allow for data signals to be considered stable at the device until after they are driven by a host.

Figure 20: Ultra DMA Data-Out Burst Device Pause Timing

Notes:

1. All waveforms in this diagram are shown with the asserted state high. Negative true signals are inverted on the bus relative to the diagram. The device can negate DMARQ(#) when requesting termination of the Ultra DMA data burst no sooner than tRP after DDMARDY# is negated.

2. After negating DDMARDY#, the device may receive zero, 1, 2, or 3 additional data words from the host. The bus polarities of DMARQ(#) and DMACK(#) are dependent on the active interface mode.

Figure 21: Ultra DMA Data-Out Burst Device Termination Timing

1. All waveforms in this diagram are shown with the asserted state high. Negative true signals are inverted on the bus relative to the diagram.

2. Definitions for the STOP, DDMARDY#, and HSTROBE signal lines are no longer in effect [after OR once] DMARQ(#) and DMACK(#) are negated. The HA[2:0], CS0# and CS1# are True IDE mode signal definitions. The HA[10:0], CE1# and CE2# are PC Card mode signals. Bus polarities of DMARQ(#) and DMACK(#) are dependent on the active interface mode.

Figure 22: Ultra DMA Data-Out Burst Host Termination Timing

1. All waveforms in this diagram are shown with the asserted state high. Negative true signals are inverted on the bus relative to the diagram.

2. Definitions for the STOP, DDMARDY#, and HSTROBE signal lines are no longer in effect once DMARQ(#) and DMACK(#) are negated. The HA[2:0], CS0# and CS1# are True IDE mode signal definitions. The HA[10:0],CE1# and CE2# are PC Card mode signal definitions. Bus polarities of DMARQ(#) and DMACK(#) are dependent on the active interface mode.

5.3.1 Flash Interface AC Characteristics

		Tir	ning	
Symbol	Parameter	Disable Flash CMD	Enable Flash CMD	Unit
		Extend	Extend	
tCLS	CLE Setup Time	2	4	tCK
tCLH	CLE Hold Time	1	2	tCK
tALS	ALE Setup Time	2	4	tCK
tALH	ALE Hold Time	1	2	tCK
tWP	WE Pulse Width	1	2	tCK
tDS	Data Setup Time	1	3	tCK
tDH	Data Hold Time	1	1	tCK
tWC	Write Cycle Time	2	4	tCK
tWH	WE High Hold Time	1	2	tCK
tWP	WE Low Hold Time	1	2	tCK

Flash Interface AC Timing Parameters for Command / Address

Flash Interface AC Timing Parameters for Data

Symbol	Parameter	Timing	Unit
tWP	WE Pulse Width	0.5	tCK
tDS	Data Setup Time	0.75	tCK
tDH	Data Hold Time	0.25	tCK
tWC	Write Cycle Time	1	tCK
tWH	WE High Hold Time	0.5	tCK
tWP	WE Low Hold Time	0.5	tCK
tRC	Read Cycle Time	1	tCK
tRP	RE Pulse Width	0.5	tCK
tREH	RE High Hold Time	0.5	tCK

Figure 23: Command Latch Cycle

Figure 24: Address Latch Cycle

Figure 25: Input Data Latch Cycle

5.4 Power Consumption (typical)

Operation (Read/Write): 110mA/90mA (UDMA6)

Idle: 5mA Sleep (Partial/Slumber): 5mA/7mA (typ. /max.)

ltem	Features			
Temperature	Operating	Standard: 0~+70℃		
Tompolataro	operating	Industrial: -40~+85°C		
Humidity	5-95%			
Vibration	20G(7-2000HZ)			
Shock	2,000G(@0.3ms half sine wave)			

6. Reliability Specification

6.1 Wear-leveling

Renice X5 2.5" IDE SSD support both static and dynamic wear-leveling, These two algorithms guarantee all type of flash memory at same level of erase cycles to improve lifetime limitation of NAND based storage

6.2 Endurance

Write endurance: >8 years @ 100GB write/ day (30GB) Read endurance: unlimited

6.3 H/W ECC for NAND Flash

Hardware BCH ECC capable of correcting errors up to 72-bit/1KB

6.4 MTBF

MTBF(Mean Time between Failures) of Renice X5 2.5" PATA IDE SSD:3,000,000 hours Data retention at 25° C of Renice SSD: >10 years

6.5 Over voltage and inrush current protection

The over voltage and inrush current protection mechanism of Renice X5 2.5" PATA IDE SSD is to deploy a protect circuitry on Device Power In. Once the current or voltage is exceeded, it will be pulled down to the normal value in very short time to protect the drive.

7. Software Interface

Renice X5 2.5" PATA IDE SSD supports the SMART (Self-Monitoring, Analysis and

Reporting Technology) command set and defines some vendor-specific data to report spare/bad block numbers. Detailed SMART commands and data structure will be updated in a later Data Sheet version.

7.1 SMART Feature Set

Renice X5 2.5" PATA IDE SSD supports the SMART (Self-Monitoring, Analysis and Reporting Technology) command set and defines some vendor-specific data to report spare/bad block numbers in each memory management unit.

Value	Command	Value	Command
D0h	Read Data	D5h	Reserved
D1h	Read Attribute Threshold	D6h	Reserve
D2h	Enable/Disable Autosave	D8h	Enable SMART Operations
D3h	Save Attribute Values	D9h	Disable SMART Operations
D4h	Execute OFF-LINE Immediate	DAh	Return Status

SMART Feature Register Values

7.2 SMART Data Structure

The following 512 bytes make up the device SMART data structure. Users can obtain the data using the "Read Data" command (D0h).

Byte	F/V	Description
0 - 1	х	Revision code
2 - 361	х	Vendor specific (see 4.2.2)
362	V	Off-line data collection status
263	х	Self-test execution status byte
364-365	V	Total time in seconds to complete off-line data collection activity
366	х	Vendor specific
367	F	Off-line data collection capability
368-369	F	SMART capability

SMART Data Structure

		Error logging capability
370	F	• 7-1 Reserved
		•0 1 = Device error logging supported
371	х	Vendor specific
372	F	Short self-test routine recommended polling time (in minutes)
373	F	Extended self-test routine recommended polling time (in minutes)
374	F	Conveyance self-test routine recommended polling time (in minutes)
375-385	R	Reserved
386-395	F	Firmware Version/Date Code
396-399	R	Reserved
400-406	F	'Chips information'
407-511	R	Reserved

1. F = content (byte) is fixed and does not change.

2. V = content (byte) is variable and may change depending on the state of the device or the commands executed by the device.

3. X = content (byte) is vendor specific and may be fixed or variable.

4. R = content (byte) is reserved and shall be zero.

7.3 SMART Attributes

The following table defines the vendor specific data in byte 2 to 361 of the 512-byte SMART data.

Attribute ID (hex)	Raw Attribute Value						Attribute Name
01	LSB	MSB	00	00	00	00	Read error rate
05	LSB	MSB	00	00	00	00	Reallocated sector count
0C	LSB	MSB	00	00	00	00	Power cycle count
A1	LSB	MSB	00	00	00	00	Number of valid spare block
A2	LSB	MSB	00	00	00	00	Number of child pair
A3	LSB	MSB	00	00	00	00	Number of initial invalid block
A4	LSB			MSB	00	00	Number of total erase count
A5	LSB			MSB	00	00	Maximum erase count

SMART Data Vendor-Specific Attributes

A6	LSB			MSB	00	00	Minimum erase count
A7	LSB			MSB	00	00	Average erase count
C0	LSB			MSB	00	00	Power-off retract count
C7	LSB	MSB	00	00	00	00	UDMA CRC error count
E1	ICB					MCB	Total LBAs written (each write unit
	LOD					IVISD	= 32MB)
E2	ICB					MCB	Total LBAs read (each read unit =
r'Z	LOD					IVIOD	32MB)

8. PATA Host ID table

The Identify Device command enables the host to receive parameter information from the Renice X5 2.5" PATA IDE SSD. This command has the same protocol as the Read Sector(s) command. The parameter words in the buffer have the arrangement and meanings defined in the following Table.

ID Table Information

Word Addres s	Default Value	Total Bytes	Data Field Type Information	
0	044Ah	2	General configuration	
1	XXXXh	2	Default number of cylinders	
2	0000h	2	Reserved	
3	00XXh	2	Default number of heads	
4	0000h	2	Obsolete	
5	0240h	2	Obsolete	
6	XXXXh	2	Default number of sectors per track	
7.0	VVVVh	1	Number of sectors per card (Word 7 = MSW, Word 8 =	
7-0		4	LSW)	
9	0000h	2	Obsolete	
10-19	XXXXh	20	Serial number in ASCII (Right justified)	
20	0002h	2	Obsolete	
21	0002h	2	Obsolete	
22	0004h	2	Obsolete	
23-26	XXXXh	8	Firmware revision in ASCII. Big Endian Byte Order in Word	
27-46	XXXXh	40	Model number in ASCII (Left justified). Big Endian Byte	
			40	Order in Word
47	8001h	9001h	2	Maximum number of sectors on Read/Write Multiple
		2	command	
48	0000h	2	Reserved	
49	0F00h	2	Capabilities	
50	0000h	2	Capabilities	

51	0200h	2	PIO data transfer cycle timing mode
52	0000h	2	Obsolete
53	0007h	2	Field validity
54	XXXXh	2	Current numbers of cylinders
55	XXXXh	2	Current numbers of heads
56	XXXXh	2	Current sectors per track
E7 E0	VVVVh	4	Current capacity in sectors (LBAs)
57-56	~~~~	4	(Word 57 = LSW, Word 58 = MSW)
59	0000h	2	Multiple sector setting
60-61	XXXXh	4	Total number of sectors addressable in LBA Mode
62	0000h	2	Reserved
62	0007h	2	Multiword DMA transfer. In PCMCIA mode this value shall
03	000711	2	be 0h.
64	0003h	2	Advanced PIO modes supported
65	0078h	2	Minimum Multiword DMA transfer cycle time per word.
05	007011	2	In PCMCIA mode this value shall be 0h.
66	0078h	2	Recommended Multiword DMA transfer cycle time.
00	007011	2	In PCMCIA mode this value shall be 0h.
67	0078h	2	Minimum PIO transfer cycle time without flow control
68	0078h	2	Minimum PIO transfer cycle time with IORDY flow control
69-79	0000h	22	Reserved
80	0100h	4	Major version number (ATAPI-8)
81	0000h		Minor version number
82	7028h	2	Command sets supported 0
83	5000h	2	Command sets supported 1
84	4000h	2	Command sets supported 2
85	0000h	2	Command sets enabled 0
86	0000h	2	Command sets enabled 1
87	0000h	2	Command sets enabled 2
88	007Fh	2	Ultra DMA mode supported and selected
89	0000h	2	Time required for Security erase unit completion
90	0000h	2	Time required for Enhanced security erase unit completion
91	0000h	2	Current Advanced power management value
92	0000h	2	Master Password revision code
	604Fh		. Hardware reset result (Master)
93	6F00h	2	. Hardware reset result (Slave)
	603Fh		. Hardware reset result (Master w/ slave present)
94-127	0000h	68	Reserved
128	0000h	2	Security status
129-159	0000h	62	Vendor unique bytes
160	0000h	2	Power requirement description
161	0000h	2	Reserved
162	0000h	2	Key management schemes supported

163	0000h	2	Advanced True IDE Timing Mode Capability and Setting
164 0000h	00006	2	Advanced PCMCIA I/O and Memory Timing Mode
	00001	2	Capability and Setting
165-175	0000h	22	Reserved
176-255	0000h	160	Reserved

9. Master/Slave disc settings .

9.1 Master disc set

Insert the jumper to Pin3-4 to set the disc as master disc. Refer to Figure 26.

9.2 Slave disc set

Insert the jumper to Pin1-2 to set the disc as slave disc. Refer to Figure 26.

Figure 26: Master/Slave Disc set

10. Ordering Information

Capacities/Flash type	Industrial Temp				
16GB/MLC	RIM016-PX52				
32GB/MLC	RIM032- PX52				
64GB/MLC	RIM064- PX52				
128GB/MLC	RIM128- PX52				
256GB/MLC	RIM256- PX52				
8GB/SLC	RIS008- PX52				
16GB/SLC	RIS016- PX52				
32GB/SLC	RIS032- PX52				
64GB/SLC	RIS064- PX52				
128GB/SLC	RIS128- PX52				
256GB/SLC	RIS256- PX52				

Valid Combinations

11. Product Part Number Naming Rule

